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The general structure of the sets of characteristic directions in the Maxwell invariant 
representation (vide infra) of spherical harmonics which have the symmetry of those defined 
by the moments of a cylindrically symmetric distribution has been determined. These results, 
valid for arbitrary orders, have been used to derive an algorithm for the construction of the 
characteristic directions. The calculations in the new algorithm are significantly simpler than 
those in the algorithm for the general spherical harmonic and in test calculations comparing 
the two algorithms the new one gave more accurate sets of characteristic directions. Previous 
work has established the convenience of the invariant representation for: (i) the calculation of 
the interaction energy of either a finite set or a crystal lattice of charge distributions; (ii) the 
construction of algorithms for problems which require partial derivatives of the electric held 
(e.g., mutual torques or induced multipoles and their contribution to the net electrostatic 
energy). 0 1989 Academic Press, Inc. 

1. INTRODUCTION 

Consider the Cartesian representation of a general spherical harmonic of 
order N, 

S,(x) = llxll -(*N+l)YN(X), (la) 

Y‘dx)= c C(n) n xl’, (lb) 
{0lnt+n2+n3=N} i= 1 

where YN(x) is a homogeneous Nth order polynomial which is a solution of 
Laplace’s equation, and is, therefore, a surface spherical harmonic in the sense 
defined by Hobson [la]. Hobson has shown [lb] that Y,,,(x) defines a set of N 
unit vectors (characteristic directions) and a scalar multiple (the Nth order 
moment) in the Maxwell invariant representation of the spherical harmonic: 

S,(x) = PCN) n (Sy. V)( l/llxll); 
i= 1 

Pa) 

v= (afax,,afax,,afax,>. 
403 

(2b) 
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His theorem [ 1 b] shows that the characteristic directions, which are unique (except 
for sign), can be determined as follows. Let: 

x(j) = Cxl(j)3 x2(j)3 x,(~)) be jth simultaneous root of Eqs. (3b), (3~) 

(34 

(3b) 

(3c) 

x;+x;+x;=o; 

Y,(x) = 0. 

It is clear that each xci) is complex. Then, 

sj=v(j)/iIIv(j)II~ 

el e2 e3 
v(I)= xl(i) x2(j) x3Ul 

xFW xkJ xhl 

(da) 

(4b) 

A general algorithm [2] for the construction of the characteristic directions 
for an arbitrary Nth order spherical harmonic requires the determination of the 
complex roots of a homogeneous polynomial of either order N or 2N in a single 
variable. This paper presents a significant simplification of this algorithm and 
establishes general forms for arbitrary order for the special case in which the 
coefficients C(n) of the spherical harmonic, Eqs. (l), have the symmetry of 
harmonics defined by the moments of a cylindrically symmetric distribution. This 
algorithm is simple to program and is considerably more efficient. Furthermore, it 
gave more accurate sets of characteristic directions than the general algorithm [2] 
did for the spherical harmonics in the following practically important problem (the 
results will be briefly summarized in Section 3). Consider the calculation of the 
electrostatic potential U(R) defined by an unpolarized charge density p(r). In SI 
units, 

U(R) = (4ns,)-’ s p(r)ljR -r(j -’ dr. (5) 

A Taylor series expansion about r = 0 gives a series which converges absolutely and 
uniformly for R exterior to any sphere containing p(r). (In molecular problems, 
since the isolated molecular charge density decreases exponentially with distance, 
this Taylor series (permanent multipole expansion) still converges asymptotically.) 
Since 

d/t3rj(lR-rll-11,=o= -d/dRjIIR-O[l-‘, (6) 

’ It is clear that V, has purely imaginary components. Nevertheless, the factor i was omitted both in 
Hobson’s book [I] and in a paper giving a general algorithm for the construction of the s, [2]. 
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The series can be written in the form: 

U(R) = (4ns,)-’ c U,,,(R, 0); 
N=O 

(74 

-1 3 

,IJl (~l~Rj)“JIIR-Oll~l~ (7b) 

M(n,O)=f fi (rj-Oj)njP(r)dr. 
j=l 

(7c) 

Since IIR - Oil-’ is a solution of LaPlace’s equation for R # 0, each partial 
derivative is also a solution. This linear combination of spherical harmonics defines 
the coefficients in the surface spherical harmonic of Eq. (lb) for which the charac- 
teristic directions were determined: 

(-1)“~,(R,O)=llXll- (2N+ ‘) Y,(x) = PcN’(0) fi (sj .V,)IIR - Ollp’; (84 
J=I 

x=R-0; WI 

v, = (Alan,, alaR2, aJaR,>. (8~) 

Section 2 outlines the general construction of the polynomials in a single variable 
whose roots define the characteristic directions of Eqs. (2k(4). It establishes general 
results about the form of the polynomials and the sets of characteristic directions. 
It is shown that for any order N = 4Q + k, 0 < k < 3, k directions lie along the sym- 
metry axis and the remaining 4Q directions occur in Q sets of four characteristic 
directions each, where each set of directions is determined from the roots of a quadratic 
equation. Each quadratic has the same form with only one variable coefficient. The 
unknown Q coefficients are given by the roots of a Q th order polynomial. A simple 
recursive construction of the polynomial from the known coefficients of the spheri- 
cal harmonic is given. Section 3 summarizes the computational steps in the new 
algorithm for the determination of the sj and tests of the comparative accuracy of 
the general and the simplifying algorithms. 

2. A SIMPLIFIED ALGORITHM FOR CYLINDRICALLY 
SYMMETRIC SPHERICAL HARMONICS 

The standard spectroscopic convention that e3 lies along the rotation axis of 
highest symmetry has been adopted. Then the coefficients C(n) of the spherical 
harmonic of Eq. (1) satisfy the conditions: 

(n, or n2 odd) + C(n) = 0; Pa) 

(N = 2P) + n3 is even; (N=2P+ l)+n, is odd; Pb) 

(ql = n2, q2 =nl, q3 = n3) -+ C(n) = C(q). (9c) 
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The first part of the construction of the algorithm for the Nth order spherical 
harmonic replaces the simultaneous solution of the Nth order polynomial in 
(x,, x2, x3) (Eqs. (3c), (lb)) and Eq. (3b) with the determination of the roots of a 
polynomial in a single variable of order equal to the greatest integer d N/2 in the 
following steps. Suppose N is odd. Let 

N=2P+ 1. (10) 

Then the symmetry requirements of Eq. (9a), (9b) imply that a C(n) of Eq. (lb) 
vanishes unless 

n=2p+e,=(2p,,2p,,2p3+l), Pl + P2 + P3 = p* (11) 

This implies that Eq. (3~) has a root x for which x3 = 0. The existence of such 
a root and Eqs. (3b), (4) imply that one characteristic direction lies along the 
symmetry axis: 

3 (sj= +e,) (124 

and 

O= Y2P+I(X)/X3= 1 42p) fi xi’“l, (12b) 
(PlPl+m+m=p~ j= 1 

42~) = C(2p + e3). (12c) 

Conversely, suppose N is even: 

N=2P. WW 

Then the symmetry requirements of Eq. (9a), (9b) imply that a C(n) of Eq. (lb) 
vanishes unless 

n=2P= (2P,, 2p2,2p3), PI + P2 + P3 = p. (13b) 

Thus the equation for an even order has the same form (with a different definition 
of Jc(2p)): 

y*P(x)= c ic(2p) n xf” = 0; 
IPIPI+P2+P3=Pi j=l 

42p) = C(2p). 

Therefore, for both even and odd N it is convenient to define 

d,-x;, j= 1,2, 3. (15) 
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Then in both cases the two polynomials Eqs. (3b), (3~) can be replaced by a single 
Pth order polynomial in d, and d,, 

Y,(<d,, dz))= 1 C(<P,, Pz))df’@=O; (16a) 
:<PI>P2>1PI+P2=p) 

iC((PlY P2)) (cf. Appendix A for their construction from the I). (16b) 

Since by symmetry no C( ( pl, p2)) vanishes, the only root of Eq. (16a) such that 
d, = 0 or d2 = 0 is the trivial root (d,, d2) = (0,O). Therefore, Eq. (16) can be 
replaced by the following Pth order polynomial equation in the variable R,: 

R, = d,ld,; (174 

0= Y,(R,)= Y,((d,,d,))/d;= $ C((k, P-k)) Rl;. (17b) 
k=O 

The symmetry of the coefficients in the spherical harmonics defined by a cylindri- 
cally symmetric distribution (Eq. (9)) implies the following relations between the 
coefficients of Y,(R,), which simplify the solution for the characteristic directions: 

even P (P=2Q): [OakGQ-l,CksCC((k,P-k))=C((P-k,k))], 

CQ = C(<Q, Q>,; 
odd P(P=2Q+l): [O<k<Q,C,=C((k,P-k))=C((P-k,k)). 

Thus the normalized Eq. (17) has the convenient symmetry: 

0 = Y,(R,)/C, = 

Q-1 

p= 2Q, Rf + I+ J'Q(~Q) R? + 1 yk(2Q)(R;-k + R:); 
k=l 

P=2Q+ 1, Rf+ lt 5 yk(2Q+ l)(RPpk+Rf); 
k=l 

l<k<Q, Yk = ck/cO. 

It can easily be verified that for odd P = 2Q + 1, R, = -1 is a root 

(19a) 

(19b) 

(19c) 

of the 
normalized equation (19). Now each root of Eq. (19) defines a simultaneous root of 
Eqs. (3.b) (3~) : 

(x,,x,,~d=c(R:‘~, 1, C-(1 +R,W2); (2Oa) 
c: any arbitrary constant. Gob) 

Therefore, Eq. (4) implies that for odd P, this root R, = -1 yields 2sj along the 
symmetry axis e3. Removal of this root gives a polynomial for the remaining roots 
of Y 2Q + ,(R, ) which has the same form as Eq. (19a) for even P: 
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Q-1 

GQ(R, I= Y2Q + 1 (R,)/(R, + 1) = R:” + 1 + yb(2Q) Rf? + c y;(2Q)(Rrpk + R:); 
k=l 

(214 

l<k<Q, y; = yk - 8: - (1 - 6;) y;- , ; P’ z 2Q. @lb) 

Thus, Eq. (12a) and the above argument show that for a spherical harmonic of 
arbitrary order N = 4Q + k, 0 6 k < 3, k characteristic directions lie along the sym- 
metry axis and the remaining 4Q are determined by the roots of the 2Qth order 
polynomials which have the symmetry of Eqs. (19a), (19c), (21a), (21b). Further- 
more, a mathematical induction argument in Appendix B proves that for arbitrary 
Q, a product of Q quadratics of identical form, 

P,- fi (l+e’;R,+R:), 
k=l 

(22) 

has this symmetry. It only remains to show that coefficients ef, . . . . ef can be deter- 
mined such that for an arbitrary polynomial having the symmetry of Eqs. (19a), 
(19~) (21a), (21b): 

f’, = Y,Q(RI) (or GQ(R, )I. (23) 

The following simple argument shows that Eq. (23) has a unique solution for the 
1 e, 3 . . . . ef by giving a recursive construction of a Qth-order polynomial whose roots 

are the desired coefficients of P, for an arbitrary polynomial of the form of 
Y,,(R, 1. 

As shown in Appendix B, the (Q - l)th-order product 

Q-1 

Pp-,- n (l+efR,+Rf) 
k=l 

is a polynomial of the form: 

P -R:‘QP’)+1+~Q-,(2[Q-1])Rf?-’ Q-l- 

Q-2 

+ 1 aj(2[Q - l])(RfCQ- ll-j+ I+{). 
j=l 

(244 

Wb) 

Therefore, Eq. (23) has the form: 

PQ=(1+e,R,+R~)(R~‘Q-1)+1+clQ_,(2[Q-1])R~-1 

Q-2 

+ ,;, ajG’[Q- ll)(R, zcQ-1’pi+R:‘))=R;Q+1+yQ(2Q)Rf 

Q-1 

+ k;, Y&Q)(R:~-~ + R’;). (25) 
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Equating coefficients of RF yields the following identities. The first (Q - 1) provide 
a recursive construction of the ak as kth-order polynomials in e,: The Q-th gives 
the Q-th order polynomial. 

k= 1, a1(2[Q-ll,=r,(2Q,-e,; (264 

k=2=Q, Wb) 

2<k<Q-1, ~~k(2CQ-ll,=rk(2Q)-e,~~-1(2CQ-11, 
- [c+p2(2[Q- l]).(l -S:)+S:]. (26~) 

Thus recursive substitution of the identities for 1 < p < Q - 1 yields successively 
each a,J2[Q - 11) as a kth order polynomial in e, whose coefficients are given as 
functions of rl(2Q), . . . . ypd1(2Q). Then th e d esired Qth-order polynomial is the 
identity: 

k=Q>2, ela,-,(2CQ-11)+2a,-,(2CQ-11>-Ye(2Q)=0. (27) 

This shows that the order of the polynomial whose roots must be determined has 
been reduced by at least a factor of 4. Specifically, for any spherical harmonic of 
order N = 4Q + k, 0 < k < 3, instead of solving for the roots of an Nth order poly- 
nomial for even N or an (N- 1 )th-order polynomial for odd N, it is only necessary 
to solve for the roots [e;, 1~ 1~ Q] of the Qth order polynomial of Eq. (27) and 
the roots of Q quadratic equations: 

l<k<Q, R:= { -e!k [(e~)2-4]‘~2}/2. (28) 

Thus for all orders < 19 the numerical determination of roots has been eliminated 
and the roots can be calculated explicitly using known functions. Note that for all 
orders < 11 the solution uses only quadratic equations. 

The conditions under which one of the four characterstic directions defined by 
the solution to one of the quadratic equations exactly lies along the symmetry axis 
have a simple interpretation when N = 4 (i.e., Q = 1). Equations (4), (20) imply that 
a characteristic direction defined by a root R’; lies exactly on the symmetry axis 
++Rt = - 1. By Eq. (28) this is true ++e: = 2 e* R: = - 1 is a double root and each 
of the four lies along the axis. For N = 4, e, = 2 only when the moments of the 
density p satisfy an equation which would hold if p were spherically symmetric 
about the expansion center. 

The next section summarizes the computational steps for this simplified algo- 
rithm and compares the accuracy of the general [2] and this simplified algorithm 
in test calculations. 
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3. SUMMARY OF THE STEPS IN THE ALGORITHM: 
RESULTS OF TEST CALCULATIONS 

The input for the algorithm is the set of constants C(n) which define the surface 
spherical harmonic of Eq. (1) and which satisfy the symmetry conditions of Eq. (9). 
(A Fortran program is available on request which generates the C(n) for a charge 
density p(r) defined by a single determinant wave function over a contracted 
Gaussian basis set.) The algorithm uses the following computational steps: (i) For 
any even order N = 2P use the rc(2p) of Eq. (14b) or for any odd order N= 2P + 1 
use the rc(2p) of Eq. (12~) to construct the coefficients C((p,, p2)) for the Pth 
order polynomials in 2 variables of Eq. (16) by Appendix A. (ii) When P is even 
(P = 2Q) calculate the Q independent coefficients yk of Eqs. (19a), (19~); when P is 
odd (P = 2Q + l), calculate the Q independent coefficients y; of Eq. (21); (iii) For 
any order N= 4Q + k, 0 <k ,< 3, Q 3 0, it has been shown that k characteristic 
directions lie along the symmetry axis e3 and that the polynomial of order 2Q is a 
product of Q quadratic factors (cf. Eqs. (22), (23)). For Q b 2 construct the Qth 
order polynomial whose roots are e:, . . . . e?, by the Q step recursion of Eqs. (26) 
(27) and calculate its roots, (iv) For each e:, compute Rf by Eq. (28). Then 
calculate (x1, x2, x3) by Eq. (20) and the characteristic directions by Eq. (4). Note 
that if ef and e{ are complex conjugate, only one of the conjugates must be 
considered explicitly, since the other necessarily yields the complex conjugate for a 
pair of roots of Eq. (4). 

Not only is the new algorithm far simpler, but in each of four test calculations 
it gave more accurate sets of characteristic directions. The tests involved the deter- 
mination of the characteristic directions of Eq. (8a) for the moments of Eq. (7~) of 
the charge density defined by wave functions for the cylindrically symmetric HF 
molecule. Wave functions both with and without polarization functions in their 
basis sets were used and characteristic directions were calculated for both single- 
and two-center expansions [3]. Whereas, it has been shown that for any spherical 
harmonic of order N = 4Q + k, 0 <k < 3, k characteristic directions lie along the 
symmetry axis, the error in the root R, = -1 extracted from the higher order 
polynomials in the general algorithm in several case gave significant off-axis 
components in two characteristic directions (when k = 2 or 3). In one case, this was 
already true at order N = 6 and in another, at N = 7. In every case, two were off 
axis at N=lO,ll (Q=2; k=2,3), and at N=14 (Q=3, k=2). In one case the 
off-axis components were in the second decimal (at N = 10) and in all other cases, 
in the third decimal. 

Consider next the remaining characteristic directions, which do not in general lie 
along the symmetry axis (those in the Q sets of four characteristic directions each). 
Comparison of those generated by the new and by the general algorithm also 
showed significant differences in some cases. Since there was no a priori basis for 
concluding which of the two sets was more accurate, some check calculations were 
made for some of the discrepancies. These verified that in the test cases the charac- 
teristic directions generated by the new algorithm were more accurate. As might be 
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expected, apparently errors in the determination of the roots R, # -1 were similar 
to those for R, = -1 and these gave similar errors in the corresponding charac- 
teristic directions. Thus errors in the second and third decimal occurred at N= 8. 

This algorithm can provide input for the following general algorithms based on 
the Maxwell invariant representation of the spherical harmonics defined by a 
charge distribution: (i) the calculation of the electrostatic potential or the electro- 
static interaction energy of either a crystal lattice [4a] or a finite collection [4b] 
of unpolarized charge distributions; (ii) the calculation of induced multipole 
moments and the contribution of polarization to the net electrostatic energy [4c, d] 
in both cases; (iii) the calculation of mutual torques (including the induced dipole 
contribution) in both cases [4e]. 

APPENDIX A: CONSTRUCTION OF THE C((p,,p2)) 

Both even (N = 2P) and odd order (N = 2P + 1) spherical harmonics give rise to 
a polynomial of the form: 

Y&J= c 42p) fi XJ”“. 
{PlPl+P2+P3=pl j= I 

(A.11 

After substitution of the definition of Eq. (15), this becomes: 

Y,(d)= c 142~) n dp,. (A.21 
1PIPI+Pz+P3=~~ j= 1 

For N= 2P+ 1, the rc(2p) are given by Eq. (12~) and for N = 2P, by Eq. (14b). 
After substitution of the definition of Eq. (15), Eq. (3b) yields d, = -(d, + d2). 
Substitution of d3(d,, d,) in Eq. (A.2) and use of the binomial expansion show that 
C( (p,, p2)) can be constructed in the following steps: 

Step 1. For each (p, , p2) such that pr + p2 = P, set an accumulator 
A((P,, P2))=4<2P1,2P*, 0)). 

Step 2. For each of the remaining (p’, , pi, pi) such that p’, + p; + pi = P and 
pi # 0, make the following additions to the accumulators: For each t,, 0 < t, < pi, 
make the addition to the accumulator A( (pl, p2)), where 

Pl = P; + Pi - t3 and pz=p;+ t,: (A.3a) 

~((P~,P,))=(-l)p~{P;!/Ct3!(P;-t3)!1}~((2P;,2p;,2p;))+A((p~,pz)). 
(A.3b) 
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APPENDIX B: PROOF THAT A PRODUCT OF A Q QUADRATICS 
OF THE FORM OF E~.(22)Is A ~QTH-ORDER POLYNOMIAL 

OF THE FORM OF EQS. (19a), (19b), (21) 

Since this is immediate for Q = 1 (and can be trivially verified for Q = 2 as well), 
it is only necessary to show that the induction hypothesis for Q = Q’ implies it is 
true for Q = Q’ + 1. Thus it is necessary to show that the product 

P= [l +@‘+I& +R;][R:“‘+ 1 +yQ(2Q’) Rf? 
Q’- 1 

+ C ri(2Q’)(R:Q’pi+ Ri) 
i= 1 

(B.la) 

has the form 

RTcQ’+ ‘) + 1 + y ~Q+,,(~CQ’+~I)R~“+“+ $, y,(2[Q’+ l])(R;‘Q’+“pk + R:). 

(B.lb) 

For this purpose it is convenient to regroup the terms in 1 and R: times the 
summation and to use the grouping 

+ [ef?‘+‘(~;Q’+’ + R, + )‘Q,(~Q’) RF” ’ )I + [Y,&!‘)(Rf’+ R?‘+2)1 
Q’- 1 

+ $‘+ 1 c yi(2Q’)(R;‘Q’+ I)- (I+ 1) + R;+ ‘) 
i= 1 

Q’- 1 

+ c Yi(2Ql)(R:(Q’+I)-(;+2)+Ril+2) 

i=l 

Q’- I 

+ c yi(2Q’)(R;‘“‘+ ‘jpi+ R;). 03.2) 
i=l 

In the second summation of Eq. (B.2), separate out the term for i= Q’- 1 and 
transform the summation index to j = i + 2 to obtain 

2YQ’- 1VQ’) R f’+‘+ 5 y,-,(2Q’)(R;‘“‘+“-‘+ R:‘). (B.3) 
J=3 

Addition of the first [ ] of Eq. (B.2) to Eq. (B.3) gives: 

2yQS-r(2Q’) Rf”’ + ,F2 (df + (1 - Si’) Y,~~(~Q’))(R:‘~‘+ ‘)-j+ R:). (B.4) 
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Add the third square bracket and the third summation of Eq. (B.2) to obtain: 

(B.5) 

In the first summation of Eq. (B.2) use the index transformation j= i+ 1, then add 
the second square bracket of the same equation to obtain: 

ef’+‘yQf(2Q’) Rf’+‘+ f [ef’+‘Bf + (1 -si’)e~‘t1yj_,(2Q’)](R:(Q’t1)-j+ R{). 
j= 1 

03.6) 

Thus the product P has the form of Eq. (B.lb) with 

?Q'+1t2[Q'+ II)= 2YQ’- 1(2Q')+e?'+1~~,(2Q'); (B.7a) 

1 <k<Q’: y,(2[Q’+l])=e~‘+‘~5~+ep’+~y,-,(2Q’)(1-6:) 

+rk(2Q')+(l-s:)Cs:+(l -%h-&&')I. 
(B.7b) 
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